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1. Introduction

A general n-point one-loop amplitude in a massless theory such as QCD can be expanded

in terms of integral functions,

A1−loop
n =

∑

i∈C

ci I
i
4 +

∑

j∈D

dj Ij
3 +

∑

k∈E

ek Ik
2 + R , (1.1)

where ci, di, ei and R are rational functions and the I4, I3, and I2 are scalar box, triangle and

bubble functions respectively. The mathematical form of these integral functions depends

on whether the momenta flowing into a vertex are null (massless) or not (massive). This

decomposition suggests a “divide and conquer” approach to evaluating one-loop amplitudes

where different techniques are used to evaluate the different types of coefficient.

In principle, traditional Feynman diagram techniques, combined with reduction strate-

gies can be used to compute the integral coefficients [1, 2]. Considerable progress has been

made in implementing this strategy, however the degree of complexity rises rapidly with

the number of external legs and the current state of the art is in the computation of five

and six-point amplitudes (see for example [3, 4]).

Alternate approaches based on the physical properties of amplitudes have proved com-

petitive or superior, particularly in computing amplitudes with enhanced symmetry, such

as those appearing in supersymmetric theories, or for amplitudes with particular helicity
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configurations. Two particularly powerful methods have been those based on unitarity and

factorisation. The conjectured duality between the perturbation theory of gauge theories

and string theory [5] has provided added insight to these approaches, particularly with

respect to complex factorisation.

The unitarity method [6, 7], combined with a knowledge of a basis set of integral func-

tions for an amplitude, provides a systematic way of calculating loop amplitudes. Two-

particle cuts provide sufficient information to identify many of the coefficients in eq. (1.1)

particularly in cases where the amplitude is “cut-constructible” [6 – 13]. In addition, ex-

tending to D-dimensional unitarity, in principle, provides the information to calculate the

rational parts [14]. Three and four particle cuts may also be used to identify coefficients

of triangle and box functions [8, 15, 16]. For the box coefficients, ci, quadruple cuts [15]

are particularly simple since the loop momentum integration is frozen by the insertion of

four δ-functions.

The analytic structure of the cut integrals appearing in the unitarity method can also

be exploited to obtain coefficients. For example, the “holomorphic anomaly” provided an

insight into the differing analytic properties of various integral functions in the two-particle

cuts [17 – 19]. Various techniques have been developed to identify the integral coefficients

based on the analytic structure of the integrand of the cut [9, 10, 20].

In this paper we explore some recent suggestions for evaluating the coefficients of the

“three-mass triangle” integral functions I3m
3 (K1,K2,K3) (K2

i 6= 0) by using the analytic

structure of the triple cut. In ref. [21] an algebraic technique was presented for obtaining

these coefficients. In this paper we review and refine this technique and present a version

that uses a single contour integration.

Although we can divide the amplitude into separate coefficients, in general, different

integral coefficients are related by a rich web of “spurious singularities”. These are singular-

ities that are not present in the full amplitude but which appear in individual coefficients.

This structure is particularly rich for the three-mass triangles. We explore and use this to

obtain compact expressions for these coefficients in the N = 1 contributions to six gluon

scattering. These provide alternate forms to those originally calculated in [9]. We present

formulae for the n-point “next-to-MHV” (NMHV) N = 1 contribution and describe how

results may be obtained in the N = 0 and beyond-NMHV cases.

2. Organisation of amplitudes

For one-loop amplitudes with external gluons in QCD it is convenient to decompose the

contribution from gluons circulating in the loop into pieces corresponding to complex scalars

or supersymmetric multiplets circulating in the loop,

A1−loop
n = A N=4

n − 4A N=1 chiral
n + A scalar

n . (2.1)

The A N=4
n component consists entirely of box integrals. The terms we look at in this

paper are the A N=1 chiral
n contributions. These amplitudes may contain any of the integral

functions (but not rational terms). Furthermore we consider the amplitude to be colour
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ordered and focus our attention on the leading in colour component from which the full

amplitude can be obtained [6, 22].

The integrals appearing in the amplitude may be box, triangle or bubble functions. We

are interested in the contributions of three-mass triangles. The relevant integral function

is defined by,

I3m
3 = i (4π)2−ǫ

∫

d4−2ǫp

(2π)4−2ǫ

1

p2 (p − K1)
2 (p + K2)

2 , (2.2)

and can be written as [23, 24],

I3m
3 =

i√
∆3

3
∑

j=1

[

Li2

(

−
(

1 + iδj

1 − iδj

))

− Li2

(

−
(

1 − iδj

1 + iδj

))]

+ O(ǫ) , (2.3)

where,

δ1 =
K2

1 − K2
2 − K2

3√
∆3

,

δ2 =
K2

2 − K2
1 − K2

3√
∆3

, (2.4)

δ3 =
K2

3 − K2
1 − K2

2√
∆3

,

and

∆3 ≡ −(K2
1 )2 − (K2

2 )2 − (K2
3 )2 + 2K2

1K2
2 + 2K2

1K2
3 + 2K2

2K2
3 . (2.5)

The other integral functions we will encounter can be obtained in many places e.g. [7].

The one-mass triangles depend only on the momentum invariant of the massive leg, K2,

I1m
3 (K2) =

rΓ

ǫ2
(−K2)−1−ǫ ≡ G(K2) , (2.6)

where rΓ ≡ Γ(1 + ǫ)Γ2(1 − ǫ)/Γ(1 − 2ǫ). The two-mass triangle integral,

I2m
3 (K2

1 ,K2
2 ) =

rΓ

ǫ2

(−K2
1 )−ǫ − (−K2

2 )−ǫ

(−K2
1 ) − (−K2

2 )
, (2.7)

can be expressed as one-mass triangle functions,

I2m
3 (K2

1 ,K2
2 ) =

1

(−K2
1 ) − (−K2

2 )

(

G(K2
1 ) − G(K2

2 )
)

, (2.8)

and we can drop these functions from our basis of integral functions in favour of G(K2)

functions. The box functions may be found in many places, for example ref. [24, 6]. We

need the form of one of these, namely the integral function where two adjacent legs are

massless; the so-called “two-mass hard” function. If k1 and k2 are the null legs, defining

S ≡ (k1 + k2)
2 and T = (k2 + K3)

2 we have,

I2mh
4 =

−2rΓ

ST

{

− 1

ǫ2

[

(−S)−ǫ + (−T )−ǫ − (−K2
3 )−ǫ − (−K2

4 )−ǫ
]

(2.9)

− 1

2ǫ2

(−K2
3 )−ǫ(−K2

4 ))−ǫ

(−S)−ǫ
+

1

2
ln2

(

S

T

)

+Li2

(

1−K2
3

T

)

+Li2

(

1−K2
4

T

)}

.
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The coefficients of the integral functions will be expressed as rational functions of

spinor inner-products [25], 〈j l〉 ≡ 〈k−
j |k+

l 〉, [j l] ≡ 〈k+
j |k−

l 〉, where |k±
i 〉 is a massless Weyl

spinor with momentum ki and chirality ±. We use notation where,

〈k+
a |/Kbcd|k+

e 〉 ≡ [a|Kbcd|e〉 = [a b] 〈b e〉 + [a c] 〈c e〉 + [a d] 〈d e〉 . (2.10)

As in twistor-space studies we define,

λi = |k+
i 〉 , λ̃i = |k−

i 〉 . (2.11)

3. Singularity structure of six-point three-mass triangles

In this section we look at the three-mass triangle integrals found in six-point one-loop gluon

scattering amplitudes. The only non-vanishing three-mass triangle coefficients appear in

the NMHV amplitudes, of which there are three inequivalent forms:

A(1−, 2−, 3−, 4+, 5+, 6+) , A(1−, 2−, 3+, 4−, 5+, 6+) , A(1−, 2+, 3−, 4+, 5−, 6+) . (3.1)

The first of these was calculated in ref. [19] and contains no three-mass triangles, as can be

seen from the triple-cuts. The remaining two were computed in ref. [9] using the analytic

structure of the two-particle cuts. Although correct (as verified by numerical comparison

to a Feynman diagram calculation [3]), these expressions contain irrational expressions

involving the square root of the Gram determinant of the three-mass triangle,
√

∆3. We

produce expressions with the correct singularity structure which explicitly do not contain

these irrational terms.

We start by considering the amplitude A(1−, 2+, 3−, 4+, 5−, 6+). As for any super-

symmetric amplitude, the cancellations occurring at one-loop imply that no rational terms

appear [7]. Further, by examining the unitarity cuts, we see that only one-mass and two-

mass hard boxes appear and, as discussed above, we choose a basis where the two-mass

triangles are replaced by one-mass triangle functions, G(K2). We thus have,

AN=1(1−,2+,3−,4+,5−,6+) =
6
∑

i=1

c1m
i I1m i

4 +
6
∑

i=1

c2mh
i I2mh i

4 +
6
∑

i=1

di G(si i+1) (3.2)

+
3
∑

i=1

d′iG(ti i+1 i+2)+d3m
1 I3m1

3 +d3m
2 I3m2

3 +
6
∑

i=1

eiI
2,i
2 +

3
∑

i=1

e′iI
3,i
2 ,

where both of the three-mass triangles, I3m 1
3 (K12,K34,K56) and I3m 2

3 (K61,K23,K45), ap-

pear. The labelling of functions is specified below,

I2mh i
4

i i − 1

I1m i
4

i + 1

i + 2

i

I3m i
3

i

I2,i
2

i

I3,i
2

i
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We shall see how much of the amplitude can be reconstructed from the singularity

structure: both real and spurious. Our starting point is the box coefficients [26],

c1m
1 = i

[2|K|5〉2[1|K|5〉[3|K|5〉
[1 3]2 〈4 5〉 〈5 6〉 [1|K|4〉[3|K|6〉K2

× −s12s23

2
, K = K123 ,

c2mh
4 = i

[2|K|5〉2[3|K|5〉[2|K|4〉
[1 2] 〈5 6〉 [3|K|6〉[1|K|4〉[3|K|4〉2 × −s34K

2

2
, K = K123 .

(3.3)

We will see that these completely determine the coefficients of the one-mass triangles and

determine much of the three-mass triangle coefficients.

3.1 Infra-red singularities

One of the major constraints on the triangle coefficients comes from requiring that the

amplitude has the correct infra-red singularities. The box integral functions with massless

legs and the one-mass triangle functions both contain ln(K2)/ǫ singularities. We then have,

[

di G(K2) +
∑

ci Ii
4

]

ln(K2)/ǫ
= 0 , (3.4)

for the N = 1 chiral multiple where such singularities do not appear in the amplitude.

These constraints fix the coefficients of the G(K2) in terms of the box coefficients.

For the N = 1 multiplet, one could choose a basis in which the coefficients of the

one-mass triangles are zero. There are several options for doing so: firstly one can choose

the basis of “six dimensional scalar box functions” as in [19] or one can choose a basis of

functions where the IR singularities have been subtracted as in [9]. In the first case the

D = 4 boxes and D = 6 boxes are related, using the notation of ref. [24],

ID=4
4 =

1

2N4

[

∑

i

αiγiI
(i)
3 + (−1 + 2ǫ)∆̂4I

D=6
4

]

, (3.5)

where I
(i)
3 is the descendant triangle in which the i-th propagator is deleted. If we change

the basis of box integral functions, the coefficients of the triangles, including the three-mass,

are shifted,

di −→ di +
αiγi

2N4
cbox . (3.6)

Although transforming to this basis is instructive, we will continue to use the basis of

D = 4 integral functions.

3.2 Spurious singularities

Looking at the box coefficients we see that factors such as,

1

[3|K123|4〉2
and

1

[1 3]2
, (3.7)

appear. The first of these is singular when the momenta are arranged such that,

kµ
1 + kµ

2 = αkµ
3 + βkµ

4 , (3.8)
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and such singularities are termed co-planar.1 These singularities are spurious, meaning

they may appear in individual terms within an amplitude but disappear when the entire

amplitude is constructed. These coplanar singularities do not cancel amongst the boxes,

but cancel between the boxes and the other integral functions. For real momenta these

singularities occur when,

t2123 + (s34 − s56 − s12) t123 + s56 s12 = 0 . (3.9)

At the coplanar singularity the link between the box coefficients and the one-mass

triangles implies that the latter also have coefficients with quadratic singularities. How-

ever the cancellation of the spurious singularities extends beyond these functions. At this

singularity the dilogarithms within the two mass hard function simplify since s12 = αβs34,

s56 = (1 + α)(1 + β)s34 and t123 = α(1 + β)s34, leading to,

I2mh
4 ∼

(

Li2

(

1 − α

(1 + α)

)

+ Li2

(

1 − 1 + β

β

))

. (3.10)

These must cancel against another integral function containing dilogarithms: the three-

mass triangle being the only possibility. The cancellation of spurious singularities can thus

be expressed as,
[

ciI
i
4 + diI

1m i
3 + d3mI3m

3

]

[a|K|b〉=0
= finite . (3.11)

This imposes a significant constraint on the three-mass triangle coefficient. One approach

is to change basis to one where this cancellation is automatic. This process is essentially

the same as that of ref. [8, 27] where the three-mass triangle functions arise in e+ + e− −→
four parton scattering. We can generate this combination using the identity (3.5),

ID=4
4 − 1

2N4

[

∑

i

αiγiI
(i)
3

]

= (−1 + 2ǫ)
∆̂4

2N4
ID=6
4 . (3.12)

For the two-mass hard box we have,

∆̂4

2N4
= −2

(

tr(/ki−1 /P /ki /P )

ST 2

)

= −2
[i|P |i − 1〉[i − 1|P |i〉

si−1i(P 2)2
. (3.13)

Thus ∆̂4/2N4 −→ 0 at the coplanar singularity and since ID=6
4 is finite at this (unphysical)

singularity we must have,

ID=4
4 − 1

2N4

[

∑

i

αiγiI
(i)
3

]

−→ 0 , (3.14)

at the coplanar singularity. Up to a scaling factor this is precisely the Ls1 function of

ref. [8]. As this combination includes a three-mass triangle, the coefficient of this three-

mass triangle in the D = 4 basis must contain a term,

−αiγi

2N4
c2mh
4 , (3.15)

1For real momenta [4|K|3〉 and [3|K|4〉 vanish simultaneously. However, by continuing to complex

momenta we can find a point where only one of them vanishes, e.g. if k1 + k2 ∼ λxλ̄3 + λ4λ̄y, [3|K|4〉 = 0

but [4|K|3〉 6= 0.
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which suggests the term,

− [2|K123|4〉 [2|K123|5〉 [3|K123|5〉
[1|K123|4〉 [3|K123|4〉2 [3|K123|6〉 t123

[2|K123|5〉 (2s12s56 − (s12 + s56 − s34) t123)

2 〈5 6〉 [1 2]
, (3.16)

within d3m. Since the three-mass triangle is the “daughter” of three different two-mass-

hard boxes, each with a different quadratic singularity, we have three such terms in the

coefficient.

This expression gives an amplitude from which the quadratic spurious singularity is

absent. However we have introduced a further fictitious singularity: a t123 pole. The three-

mass triangle should not contain such a pole. We can “fix” this by adding an extra term,

giving,

−[2|K123|4〉[2|K123|5〉[3|K123|5〉
[1|K123|4〉[3|K123|4〉2[3|K123|6〉t123

(

[2|K123|5〉(2s12s56−(s12+s56−s34)t123)

2 〈5 6〉 [1 2] [3|K123|4〉
+〈1 3〉[6 4]

)

.

(3.17)

This process fixes the leading quadratic coplanar pole. Fixing the remaining linear singular-

ity gives more terms in the amplitude. Repeating the process as before we can deduce that,

1

[3|K|4〉2

(

ID=4
4 − 1

2N4

[

∑

i

αiγiI
(i)
3

]

+
∆4

(2N4)2

[

∑

i

αiγiI
D=6,(i)
3

])

−→ finite , (3.18)

at the coplanar singularity. The function,

J4 ≡
(

ID=4
4 − 1

2N4

[

∑

i

αiγiI
(i)
3

]

+
∆4

(2N4)2

[

∑

i

αiγiI
D=6,(i)
3

])

, (3.19)

is a combination of the D = 4 two-mass box, D = 4 triangle functions and D = 4 bubble

functions. If we took the box coefficients and used the J4 functions as a basis rather than

the I4 functions, we could extend the box contributions,

∑

i

ciI
i
4 −→

∑

i

ciJ
i
4 , (3.20)

to obtain an expression containing much of the three-mass triangle and bubble contributions

to the amplitude. This would be an expression without [3|K123|4〉, [1|K561|2〉 or [5|K345|6〉
singularities. It may however contain linear singularities due to [5|K561|2〉, [1|K456|4〉 or

[3|K123|6〉 vanishing.

Looking carefully at the full singularity structure, after some trial and error, we are

led to the expression for the three-mass triangle coefficient,

d
[{1−2+},{3−4+},{5−6+}]
3m × (−i) = (3.21)

− [4|K345|1〉[5|K345|1〉[4|K345|6〉
[5|K345|2〉[3|K345|6〉[5|K345|6〉t345

(

[4|K345|1〉 (2s12s34+(s56−s12−s34)t345)

2 〈1 2〉 [3 4] [5|K345|6〉
+〈3 5〉[2 6]

)

− [6|K561|2〉[1|K561|3〉[6|K561|3〉
[1|K561|2〉[5|K561|2〉[1|K561|4〉t561

(

[6|K561|3〉 (2s34s56+(s12−s34−s56)t561)

2 〈3 4〉 [5 6] [1|K561|2〉
+〈5 1〉[4 2]

)

− [2|K123|4〉[2|K123|5〉[3|K123|5〉
[1|K123|4〉[3|K123|4〉[3|K123|6〉t123

(

[2|K123|5〉(2s12s56−(s12+s56−s34)t123)

2〈5 6〉[1 2][3|K123|4〉
+〈1 3〉[6 4]

)
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−
(〈1 3〉 〈3 5〉 [2 6] [3 4] + 〈1 3〉 〈1 5〉 [1 2] [4 6] + 〈1 5〉 〈3 5〉 [2 4] [5 6]

∆3

)

×
(

[5|K345|1〉[4|K345|6〉(t345−t346)

[5|K345|2〉[3|K345|6〉[5|K345|6〉
+

[6|K561|2〉[1|K561|3〉(t561−t562)

[1|K561|2〉[5|K561|2〉[1|K561|4〉
+

[2|K123|4〉[3|K123|5〉(t123−t124)

[1|K123|4〉[3|K123|4〉[3|K123|6〉

−2
[6|K234|2〉[2|K456|4〉[4|K612|6〉−[5|K345|1〉[1|K561|3〉[3|K123|5〉

[5|K561|2〉 [1|K456|4〉 [3|K456|6〉

)

.

We have confirmed this expression by comparison with a numerical evaluation of the triple

cut. This provides an alternative form for the coefficient previously obtained in ref. [9].

Our form is free of irrational expressions and has a more manifest singularity structure.

We also obtain a rational form for the other six-point three-mass triangle coefficient,

d
[{2−3+},{4−5+},{6+1−}]
3m × (−i) = (3.22)

[2 6] [2|K345|4〉[6|K345 |4〉
[1 2] [2|K345|3〉[2|K345|5〉t345

(

[6|K345|4〉(2s61s45 + (s23 − s61 − s45)t345)

2 [6 1] 〈4 5〉 [2|K345|3〉
+ 〈1 2〉 [3 5]

)

+
〈5 1〉 [3|K234|5〉[3|K234 |1〉

〈5 6〉 [4|K234|5〉[2|K234|5〉t234

(

[3|K234|1〉(2s23s61 + (s45 − s23 − s61)t234)

2 [2 3] 〈1 6〉 [4|K234|5〉
+ 〈2 4〉 [6 5]

)

+
[1 3] 〈6 4〉 [3|K123|4〉

[1 2] 〈5 6〉 [1|K123|6〉t123

(

[3|K123|4〉(2s45s23 + (s61 − s45 − s23)t123)

2 [2 3] 〈4 5〉 [1|K123|6〉
+ 〈1 2〉 [6 5]

)

−
(〈4 2〉 〈2 1〉 [3 2] [6 5] + 〈4 1〉 〈2 1〉 [6 1] [3 5] + 〈4 2〉 〈4 1〉 [4 5] [3 6]

∆3

)

×
(

2
[2 6] 〈6 5〉 [3 6] 〈6 4〉 − 〈5 1〉 [1 2] 〈4 1〉 [1 3]

[1 2] 〈5 6〉 [2|K561|5〉
+

[1 3] 〈4 6〉 (t123 − t623)

〈5 6〉 [1 2] [1|K123|6〉

+
[2 6] [2|K345|4〉(t345 − t245)

[1 2] [2|K345|5〉[2|K345|3〉
+

〈5 1〉 [3|K234|5〉(t234 − t235)

〈5 6〉 [2|K234|5〉[4|K234 |5〉

)

,

which we have again confirmed by comparison with a numerical evaluation of the triple cut.

4. Analytic evaluation of the three-mass triangle coefficients

In this section we explore and refine some recent suggestions for using the analytic structure

of triple cuts [21, 20, 28] to evaluate the three-mass triangle coefficients.

Consider a triple cut in an amplitude where all three corners are massive,

•

•

•

•
ℓ0

ℓ1 ℓ2

K2K1

K3
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C3 =
∑

hi∈S′

∫

d4ℓ1δ(ℓ
2
0)δ(ℓ

2
1)δ(ℓ

2
2)A1

(

(ℓ0)
h1, im, . . . , ij , (−ℓ1)

−h2

)

(4.1)

×A2

(

(ℓ1)
h2 , ij+1, . . . , il, (−ℓ2)

−h3

)

× A3

(

(ℓ2)
h3 , il+1, . . . , im−1, (−ℓ0)

−h1

)

,

where the summation is over all possible intermediate states. As the momentum invariants,

Km = kim +kim+1+ · · ·+kij etc, are all non-null, there exist kinematic regimes is which the

integration has non-vanishing support for real loop momentum. If we expand the amplitude

in terms of a basis of integral functions (1.1), the only integral functions contributing to

the triple cut are box functions and the specific three-mass triangle for the cut,

C3 =
∑

i

ci(I
i
4)triple−cut + d3m(I3m

3 )triple−cut

=
∑

i

ci

κi
+ d3m

π

2
√−∆3

, (4.2)

For the two-mass hard and three-mass boxes that arise in the six and seven-point examples

we discuss, the cuts of the box integral functions are,

1

κ2mh
= ± π

2(k1 + k2)2(k2 + K3)2
,

1

κ3m
= ± π

2
(

(k1 + K2)2(K2 + K3)2 − K2
2K2

4

) . (4.3)

We will discuss the overall sign below.

Alternatively we can perform the cut integral (4.1). The triple cut is a one-parameter

integral which can be calculated using algebraic methods [21]. We review the procedure

for the general triple cut emphasising the geometric interpretation in the three-mass case

as a contour integral.

The first step is to find a suitable parameterization of the cut momenta which satisfy

l2i = 0 with l1 = l0 − K1 and l2 = l0 + K2. As
∑

Ki = 0, the momenta Ki define a plane.

Within this plane there exists a momentum, aµ
0 , satisfying a2

0 = (a0 − K1)
2 = (a0 + K2)

2.

Explicitly [20],

aµ
0 =

K2
2

2

K1 · K2 + K2
1

K2
1K2

2 − (K1 · K2)2
Kµ

1 − K2
1

2

K1 · K2 + K2
2

K2
1K2

2 − (K1 · K2)2
Kµ

2 . (4.4)

In the three-mass case, |a0| 6= 0, the cut momenta are real and for a0 time-like can be

parameterised in the form,

ℓµ
0 = aµ

0 + ρ(cos θmµ + sin θnµ) , (4.5)

where ρ =
√

−a2
0 and 0 ≤ θ ≤ 2π. The vectors m and n are mutually orthogonal unit

vectors which are orthogonal to the (K1,K2) plane; (m · n) = (m · Ki) = (n · Ki) = 0.

For a0 space-like, a hyperbolic parameterization can be used. If we now define the complex

null momenta, r = ρ
2 (m + in) and r = ρ

2 (m − in), we recover the parameterization used

in [20, 21],2

ℓµ
i = t rµ +

1

t
rµ + aµ

i , (4.6)

2The t in our parameterization and that in [21] are related by a scaling
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where t = eiθ, a1 = a0 − K1 and a2 = a0 + K2.

We can define null momenta K̂i in the plane of the Ki via [21],

K̂1 =
γ2

γ2 − K2
1K2

2

(

K1 −
K2

1

γ
K2

)

,

K̂2 =
γ2

γ2 − K2
1K2

2

(

K2 −
K2

2

γ
K1

)

, (4.7)

where γ = K1 · K2 + 1
2

√−∆3. In terms of the K̂i,

r ∼ λK2
λ̄K1

, r̄ ∼ λK1
λ̄K2

. (4.8)

(We will drop the “hat” on Ki when it is clear from context that we are referring to the

null form.)

For the spinors this parameterisation corresponds to,

λli = tλK1
+ α01λK2

, λ̄li =
1

t

(

tλ̄K2
+ α02λ̄K1

)

, (4.9)

where,

α01 =
K2

1 (γ − K2
2 )

γ2 − K2
1K2

2

, α02 =
K2

2 (γ − K2
1 )

γ2 − K2
1K2

2

. (4.10)

With the parameterization (4.6) it is clear that the cut integration becomes a contour

integration over the complex variable t with the contour being the unit circle. The integral

then becomes,
∫

d4l
∏

i

δ(ℓ2
i )(•) −→

∫

dtJt(•) , (4.11)

where Jt = 1/(4t
√

∆3) is the Jacobian. Regarding t as complex allows the integral to be

performed analytically using contour methods. In the three-mass case the contour is well

specified.

Parameterising the loop momenta according to (4.6) the product of tree amplitudes

A1 A2 A3 is a rational function of t. This rational function will have simple poles at

t = ti 6= 0 and, possibly, non-simple poles at t = 0. Poles in this product at t = ti 6= 0 arise

when one of the tree amplitudes factorises and some momentum, P̂ (t), becomes null:

A −→
P̂ 2→0

ÂL
1

P̂ (t)2
ÂR, (4.12)

where ÂL and ÂR are tree amplitudes evaluated at the momenta where P̂ 2 vanishes. In

general P̂ 2 = 0 gives two poles. For the six and seven-point examples we discuss, one

of these poles gives the box contribution while the other gives no contribution. In these

examples each box has at least one massless corner and we have P̂ = l ± a, where a is the

external momentum of a massless corner. Poles arise when either 〈l a〉 = 0 or [l a] = 0.

The original tree amplitudes will only contain one of these poles, so only one of the poles

– 10 –
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can contribute to the triple cut. If the appropriate pole is inside the contour of integration,

the contribution to the triple cut is of the form,

2πiRes

(

A1A2Â3LÂ3R

4t
√

∆3P̂ 2

)∣

∣

∣

∣

t=ti

. (4.13)

By comparison with the quadruple cut procedure, we see that the product of on-shell tree

amplitudes reproduces the box coefficient up to a factor of 2. It is useful to compare the

rest of this expression to the triple cut of the corresponding scalar box,

∫

dtJt
1

(l0 − P )2
=

∫

dt

4t
√

∆3

1

P̂ 2
. (4.14)

This has poles in identical positions, but both could in principle contribute. Denoting the

two t-values for which (l0 − P )2 vanishes by t±, we have,

1

t(ℓ0 − P )2
=

−1

(2r · P )(t − t+)(t − t−)
=

−1

(2r · P )(t+ − t−)

(

1

t − t+
− 1

t − t−

)

. (4.15)

The two poles thus have equal but opposite residues. In the three-mass case, t+ and t−
are the roots the quadratic equation,

2r · Pt2 + (2a0 · P − P 2)t + 2r · P = 0 , (4.16)

so the product of the roots is,

t+t− =
r · P
r · P → |t+t−| = 1 . (4.17)

One pole is always inside the unit circle and one is outside. Thus the triple cut of the

box function always gives a contribution, but the sign depends on the kinematic point. In

contrast, the original triple cut integral only receives contributions if the appropriate pole

is inside the contour of integration.

In general (A1 A2 A3)/t can also have a pole at t = 0 and we denote the residue of this

pole by ρ0. Using both approaches to evaluate the triple cut integral we then have,

C3 =
∑

i

2Θ(1 − |ti|)
ci

τi
+

2πρ0√−∆3
=
∑

i

−(−1)Θ(1−|ti|) ci

τi
+ d3m

π

2
√−∆3

, (4.18)

where, τi = −(−1)Θ(1−|ti|)κi. We can rearrange this to give an expression free from Θ

functions,
2πρ0√−∆3

=
∑

i

−ci

τi
+ d3m

π

2
√−∆3

≡ S ≡ Sbox + Striangle , (4.19)

which relates ρ0 to a specific sum of box and triangle contributions. The box contributions

are readily calculated either by quadruple cuts or by using the fact that they are half of

the t 6= 0 residues. The latter approach provides a realisation of the quadruple cut proce-

dure that is amenable to automation [21]. The three-mass triangle contribution to ρ0 can

thus readily be identified. A slightly different formulation involving integration over two
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different regions (corresponding to the interior and exterior of the unit circle in this case)

was presented in [21].

For any n-point NMHV amplitude the three tree amplitudes in the triple-cut of a

three-mass triangle are of MHV type. When we parameterise the integral by t, each tree

amplitude has a t−1 factor since each contains a 〈li li+1〉−1 factor and, for example,

〈l0 l1〉 =
[r|/l0 /l1|r]
[r l0] [l1 r]

=
[r|(tr̄ + t−1r + a0)(tr̄ + t−1r + a0 − K1)|r]

[r l0] [l1 r]

=
[r|tr̄(a0 − K1) + ta0r̄ + a0(a0 − K1)|r]

[r l0] [l1 r]

= t
[r|r̄(a0 − K1) + a0r̄|r]

[r l0] [l1 r]
= t

−[r|r̄K1|r]
[r l0] [l1 r]

, (4.20)

using the orthogonality properties of r, r̄, a0 and K1. The [r li] factors cancel overall as the

product of tree amplitudes has no spinor weight in li. Thus, for each particle circulating

in the loop, the integrand has a t−3 factor and ρ0 must be extracted by expanding around

this triple pole.

For the N = 1 coefficients we present, summing over the particle types leads to can-

cellations. Relative to the case of a scalar in the loop, the N = 1 multiplet has an overall

factor. Denoting the three negative helicity external legs by mi, this factor is,

(〈l0 m1〉 〈l1 m2〉 〈l2 m3〉 − 〈l2 m1〉 〈l0 m2〉 〈l1 m3〉)2
〈l0 m1〉 〈l1 m2〉 〈l2 m3〉 〈l2 m1〉 〈l0 m2〉 〈l1 m3〉

. (4.21)

Cancellations in the numerator give this expression an overall factor of t2 implying that

the full N = 1 integrand diverges as t−1. ρ0 can then be extracted by taking a derivative:

ρ0 ∼ d

dt

(

t(A1A2A3)
)

t−→ 0
. (4.22)

For N = 4 the overall factor is that of N = 1 squared and thus introduces a t4 factor.

For these amplitudes it is thus trivial to see that ρ0 = 0 and there are no three-mass

triangles present in the expansion. This argument easily extends to show that there are no

three-mass triangles present in N = 8 supergravity [29].

5. Canonical forms

We can use the techniques of the previous section to derive canonical forms for evaluating

the coefficients of three mass triangles from the triple cut. In general we wish to expand

the product of tree amplitudes in the triple cut as a sum of standard forms. Let us take

as the starting point a term of the form,

〈b ℓ0〉
〈a ℓ0〉

, (5.1)

and let us carry out the parameterisation of ℓ0 given in (4.9) including a factor of t−1 from

the measure to obtain the following integrand,
(

t 〈K1 b〉 + α01 〈K2 b〉
)

t
(

t 〈K1 a〉 + α01 〈K2 a〉
) =

1

t

〈K2 b〉
〈K2 a〉 +

(

〈K2 a〉 〈K1 b〉 − 〈K1 a〉 〈K2 b〉
)

〈K2 a〉
(

t 〈K1 a〉 + α01 〈K2 a〉
) , (5.2)
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provided that 〈aKi〉 6= 0. The contribution to the three-mass triangle is the residue at

t = 0 minus half the residue at t 6= 0, namely,

〈K2 b〉
〈K2 a〉 −

(〈K2 a〉 〈K1 b〉 − 〈K1 a〉 〈K2 b〉)
2 〈K2 a〉 〈K1 a〉 (5.3)

=
(〈K2 a〉 〈K1 b〉 + 〈K1 a〉 〈K2 b〉)

2 〈K2 a〉 〈K1 a〉

=
〈a|(K̂1K̂2 − K̂2K̂1)|b〉

2〈a|K̂1K̂2|a〉
=

〈a|(K1K2 − K2K1)|b〉
2〈a|K1K2|a〉

,

with the K̂i as defined as in eq. (4.12). When 〈aK1〉 = 0 (i.e. λa ∼ λK1
) there is no t 6= 0

pole and we have,
〈ℓ0 b〉
〈ℓ0 K1〉

−→ 〈K2 b〉
〈K2 K1〉

. (5.4)

Next, consider expressions of the form,

〈a ℓ0〉 〈b ℓ0〉
〈ℓ0|K1K2|ℓ0〉

, (5.5)

which are evaluated by replacing the Ki by K̂i,

〈a ℓ0〉 〈b ℓ0〉
〈ℓ0|K1K2|ℓ0〉

=
1

(1−K2
1K2

2/γ2)

〈a ℓ0〉 〈b ℓ0〉
〈ℓ0|K̂1K̂2|ℓ0〉

=
1

(1−K2
1K2

2/γ2)

〈a ℓ0〉 〈b ℓ0〉
〈ℓ0K1〉[K1 K2]〈K2ℓ0〉

,

=
〈a ℓ0〉

[K1 K2] (1−K2
1K2

2/γ2)

( 〈bK1〉
〈ℓ0K1〉〈K2K1〉

+
〈bK2〉

〈K2K1〉〈K2ℓ0〉
)

, (5.6)

which is two terms of the form (5.4). After some algebra, we can combine these terms to

obtain,
〈ℓ0 a〉 〈ℓ0 b〉
〈ℓ0|K1K2|ℓ0〉

−→triangle
〈a|(K1K2 − K2K1)|b〉

∆3
=

〈a|[K1,K2]|b〉
∆3

. (5.7)

We can extend this to,

〈ℓ0 a〉 〈ℓ0 b〉 〈ℓ0 c〉
〈ℓ0|K1K2|ℓ0〉 〈ℓ0 d〉 −→triangle

〈b|[K1,K2]|d〉〈c|[K1,K2]|a〉 − ∆3 〈b d〉 〈c a〉
2∆3〈d|K1K2|d〉

+
〈d b〉 〈d c〉 〈a|[K1,K2]|d〉

2〈d|K1K2|d〉2
. (5.8)

This result will be sufficient to obtain the three-mass triangle coefficients for the n-point

NMHV N = 1 contribution.

For a general N = 1 amplitude we also need,

[A|ℓ0|b〉 〈ℓ0 c〉
〈ℓ0 d〉 −→triangle −

[A|a0|d〉
(

〈d|[K1,K2]|b〉〈d|[K1,K2]|c〉 − ∆3 〈d b〉 〈d c〉
)

8〈d|K1K2|d〉2

+
[A|a0|b〉〈d|[K1,K2]|c〉 + [A|a0|c〉〈d|[K1,K2]|b〉

4〈d|K1K2|d〉
. (5.9)
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6. n-point NMHV N = 1 results

We consider an n-point amplitude with three negative helicity legs mi. The triple cut

vanishes unless there is precisely one external negative helicity leg at each corner. The

product of the tree amplitudes will be,

∑

h=0,±1/2

A(ℓh
0 , r + 1+, . . . ,m−

1 , . . . , s+,−ℓ−h
1 ) × A(ℓh

1 , s + 1+, . . . ,m−
2 , . . . , t+,−ℓ−h

2 )

× A(ℓh
2 , t + 1+, . . . ,m−

3 , . . . , r+,−ℓ−h
0 )

= A(ℓ0
0, r + 1+, . . . ,m−

1 , . . . , s+,−ℓ0
1) × A(ℓ0

1, s + 1+, . . . ,m−
2 , . . . , t+,−ℓ0

2)

× A(ℓ0
2, t + 1+, . . . ,m−

3 , . . . , r+,−ℓ0
0) × ρ . (6.1)

The ρ-factor arises from summing over the multiplet and is,

ρ =

(

〈m1 ℓ0〉 〈m2 ℓ1〉 〈m3 ℓ2〉 − 〈m1 ℓ1〉 〈m2 ℓ2〉 〈m3 ℓ0〉
)2

〈m1 ℓ0〉 〈m2 ℓ1〉 〈m3 ℓ2〉 〈m1 ℓ1〉 〈m2 ℓ2〉 〈m3 ℓ0〉

=
〈X ℓ0〉2

〈m1 ℓ0〉 〈m2 ℓ1〉 〈m3 ℓ2〉 〈m1 ℓ1〉 〈m2 ℓ2〉 〈m3 ℓ0〉 [ℓ1 ℓ2]
2 , (6.2)

where,

|X〉 = |m1〉
(

〈m3|K3K1|m2〉 + 〈m2 m3〉 (K2
2 − K2

1 )
)

+ |m3〉〈m1|K1K3|m2〉 . (6.3)

The cut is of the form,

1
∏

i6=r,s,t 〈i i + 1〉 ×
〈m1 ℓ0〉 〈m1 ℓ1〉

〈ℓ0 r + 1〉 〈s ℓ1〉 〈ℓ1 ℓ0〉
× 〈m2 ℓ1〉 〈m2 ℓ2〉

〈ℓ1 s + 1〉 〈t ℓ2〉 〈ℓ2 ℓ1〉
(6.4)

× 〈m3 ℓ2〉 〈m3 ℓ0〉
〈ℓ2 t + 1〉 〈r ℓ0〉 〈ℓ0 ℓ2〉

× 〈X ℓ0〉2

[ℓ1 ℓ2]
2 .

In this we can combine, 〈ℓ1 ℓ0〉 [ℓ1 ℓ2] 〈ℓ0 ℓ2〉 = −〈ℓ0|K1K2|ℓ0〉 and 〈ℓ2 ℓ1〉 [ℓ1 ℓ2] = −K2
3 . We

can write (6.4) in terms of just one of the cut momenta using identities of the form,

〈ℓ1 b〉
〈ℓ1 a〉 =

〈ℓ0 ℓ2〉 [ℓ2 ℓ1] 〈ℓ1 b〉
〈ℓ0 ℓ2〉 [ℓ2 ℓ1] 〈ℓ1 a〉 =

〈ℓ0|K2 K3|b〉
〈ℓ0|K2 K3|a〉

≡
〈

ℓ0 b32
〉

〈ℓ0 a32〉 , (6.5)

where we use the compact notation |aij〉 ≡ KjKi|a〉. This gives,

1

K2
3

∏

i6=r,s,t 〈i i + 1〉×
〈m1 ℓ0〉

〈

m32
1 ℓ0

〉〈

m32
2 ℓ0

〉〈

m31
2 ℓ0

〉

〈m3 ℓ0〉
〈

m31
3 ℓ0

〉

∏

y∈Y6
〈ℓ0 y〉 × 〈X ℓ0〉2

〈ℓ0|K1K2|ℓ0〉
,

(6.6)

where Y6 = {r, r+1, s32, (s+1)32, t31, (t+1)31}. Using partial fractions this can be written

as,

1

K2
3

∏

i6=r,s,t 〈i i + 1〉 ×
∑

y∈Y6

〈

m32
1 y
〉 〈

m32
2 y
〉 〈

m31
2 y
〉

〈m3 y〉
〈

m31
3 y
〉

∏

z∈Y6,z 6=y 〈z y〉 × 〈m1 ℓ0〉 〈X ℓ0〉2
〈y ℓ0〉 〈ℓ0|K1K2|ℓ0〉

.

(6.7)
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This is simply a sum of canonical forms (5.8) and so the three-mass triangle coefficient

is,

−i

K2
3

∏

i6=r,s,t 〈i i + 1〉
∑

y∈Y6

〈

m32
1 y
〉 〈

m32
2 y
〉 〈

m31
2 y
〉

〈m3 y〉
〈

m31
3 y
〉

∏

z∈Y6,z 6=y 〈z y〉 (6.8)

×
(〈m1|[K1,K2]|y〉〈X|[K1,K2]|X〉

2∆3〈y|K1K2|y〉
+
〈y X〉 〈y m1〉 〈X|[K1,K2]|y〉

2〈y|K1K2|y〉2
)

.

7. Beyond NMHV and N = 0

We can, in principle, use the methods described above to obtain the three-mass triangle

coefficients for amplitudes beyond NMHV or with less supersymmetry, i.e. N = 0. In this

section we outline how this may be performed.

In general the product of the tree amplitudes will be a sum of terms which we treat

individually. The first step is to turn each term into a function of a single loop momentum,

say ℓ0 ≡ ℓ. Furthermore we will make this a function depending predominantly on terms

such as 〈a ℓ〉 rather than [a ℓ]. We can do this via replacements such as,

〈ℓ1 b〉
〈ℓ1 a〉 =

〈ℓ0 ℓ2〉 [ℓ2 ℓ1] 〈ℓ1 b〉
〈ℓ0 ℓ2〉 [ℓ2 ℓ1] 〈ℓ1 a〉 =

〈ℓ|K2 K3|b〉
〈ℓ|K2 K3|a〉

,

[ℓ1 b]

[ℓ1 a]
=

〈ℓ|K1|b]
〈ℓ|K1|a]

,

[ℓ0 b]

[ℓ0 a]
=

〈ℓ0 ℓ2〉 [ℓ2 ℓ1] 〈ℓ1 ℓ0〉 [ℓ0 b]

〈ℓ0 ℓ2〉 [ℓ2 ℓ1] 〈ℓ1 ℓ0〉 [ℓ0 a]
=

〈ℓ|K2 K3 K1|b]
〈ℓ|K2 K3 K1|a]

. (7.1)

While it is always possible to make the above replacements for the triple-cut, analogous

replacements are not always possible for the two-particle cut. Carrying out all possible

replacement as described above, each term in the cut can be written in the form,

∏n
i=1 〈Ai ℓ〉

∏n
j=1 〈Bj ℓ〉∏p

l=1(ℓ + Ql)2
×

q
∏

k=1

[Ck|ℓ|Dk〉 . (7.2)

We can tackle the massive propagators by utilising the identity,

1

(ℓ + Q)2
[C ℓ] =

1

(ℓ + Q)2
[C|K1 (K1 + Q)Q|ℓ〉

〈ℓ|K1Q|ℓ〉 − [C|K1|ℓ〉
〈ℓ|K1Q|ℓ〉 . (7.3)

Using the parameterization (4.9) we see that the first and third terms are O(t0) near t = 0,

while the second is O(t1).3 Multiple application of this identity leads to a sum of terms of

the form,
∏n+2p

i=1 〈Ai ℓ〉
∏n+2p

j=1 〈Bj ℓ〉

(

q−p
∏

k=1

[Ck|ℓ|Dk〉
)

, (7.4)

3It is worth noting that this counting would not have held had the numerators contained 〈ℓ|K1K2|ℓ〉

rather than of 〈ℓ|K1Q|ℓ〉. Recalling that K̂1 and K̂2 are null vectors in the (K1, K2) plane, we see that in

this case there are cancellations within the denominator which give it an extra overall factor of t.
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together with terms that vanish at t = 0 - these only contribute to box coefficients and can

be neglected.

In general the Yang-Mills amplitudes at each corner contribute an effective overall

momentum power of ℓ1. Thus the N = 0 amplitude contains terms with momentum power

up to ℓ3. For N = 1 contributions, summing over the multiplet cancels the two leading

powers and we expect the three-point integrals to go as ℓ1 and thus expect q = p + 1. In

this case (7.4) is expressed as a sum of canonical terms of the form evaluated in (5.7)–(5.9).

For general N = 0 contributions we expect terms with q = p + 3 which could be obtained

using higher power analogues of (5.9).

8. Conclusions

We have discussed a range of techniques that utilise the analytic properties of one-loop

amplitudes to generate the coefficients of one-loop integral functions. By combining these

carefully we have generated explicit expressions for the coefficients of the three-mass tri-

angle functions in any NMHV n-point N = 1 amplitude.
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